COMBUSTION OF A GAS SUSPENSION OF METAL PARTICLES

V. B. Librovich,
and B. I. Khaikin

V. 1.

Lisitsyn,

UDC 662.58

The combustion of a gas suspension of particles reacting in accordance with a heterogeneous
mechanism was considered in [1-4]. It was assumed that the reaction rate at the surface of
the individual particles does not depend on the thickness of the oxide film, or that a film does
not form, i.e., the reaction products are gaseous. With the oxidation of many metals the ox-
ide film formed inhibits the reaction, i.e., with its growth, the rate of the reaction decreases.
The special characteristics of the process of the combustion of individual particles of metals
arising as a result of the effect of the oxide film were considered in [5], in which it was
shown that the dependence of the reaction rate on the thickness of the film has a considerable
effect on the laws governing the combustion of individual particles. In the present work, a
study was made of the process of the combustion of a gas suspension of particles of metals
oxidizing in accordance with the so-called parabolic law (the reaction rate is inversely pro-
portional to the thickness of the oxide film). The results are compared with the laws govern-
ing the combusion of a gas suspension of particles reacting in accordance with a purely heter-
ogeneous mechanism in the absence of an oxide film.

1. Statement of Problem

We shall consider the combustion of a gas suspension in a vessel, assuming that the temperature of
the gas is identical over the whole volume and that the heat losses from the vessel are proportional to the
difference between the temperatures of the gas and the walls of the vessel.

Assuming that all the particles are of identical size and that they are uniformly distributed in the
vessel, we write the equations of the heating of an individual particle, of the balance of the thermal energy
of the gas, and of the rate of growth of the oxide film
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Here T, Ty, Ty are the temperatures of the particles, the gas, and the wall of the vessel, respectively;
T, is the scale temperature, whose selection is elucidated during the course of the solution; B is the mass
concentration of the particles in the suspension; &;, 6 are the initial and instantaneous thickness of the oxide
film; r is the characteristic dimension of a particle; Ag is the coefficient of thermal conductivity of the gas;
¢, cg are the specific heat capacities of the particles and the gas; p, pg are the densities of the particles and
the gas; Q is the heat effect of the reaction per gram of film of oxide, multiplied by the ratio of the densities
of the oxide and the metal; Nu, Nuy, are the Nusselt numbers of the heat transfer between the particles and
the gas and between the gas suspension and the walls of the vessel, respectively; E is the activation energy;
k is the preexponent in the law of the rate of growth of the oxide film; c is the concentration of the oxidizer
at the surface of a particle; m is the order of the reaction with respect to the oxidizer; ay, is the heat-
transfer coefficient from the gas suspension to the walls of the vessel, ayw = NuwAg/L; L, V are the charac-
teristic dimension and volume of the vessel; S is the heat-transfer surface of the vessel; N is the number
of particles in unit volume of the gas suspension; t is the time; n is the exponent in the oxidation law (n =1
represents a parabolic oxidation law).

The first term in the right-hand part of Eq. (1.1) describes diffusional conditions of the oxidation of a
metallic particle under which the rate of the reaction is limited by the diffusion of the oxidizer through the
oxide film; the diffusion coefficient is assumed to depend on the temperature in accordance with the Ar-
rhenius formula with the activation energy E. This expression enters also into the expression for the rate
of growth of the oxide film. The remaining terms in the equations describe the heat transfer between the
particles and the gas, and between the gas suspension and the walls of the vessel.

The system (1.1)-(1.3) is written in the approximation of a two-temperature continuous medium. This
imposes a limitation on the mass concentration of the particles, since in this approximation the distance
between the particles must be greater than the size of the particles (at pressures on the order of 1 atm
B = 0.45-0.5).

2. Combustion of a Thermally Insulated Suspension

Let us consider the case wherc the evolution of heat in the wall of the vessel may be neglected. As
analysis shows, this can be done, for example, when the temperature of the walls Ty exceeds the critical
combustion temperature due to heat losses from the whole gas suspension in some characteristic ranges
of RTy?2/E, so that a strong rise in the reaction rate takes place until intense heat transfer from the walls
of the vessel sets in. From system (1.1)~(1.3) we obtain the balance of the total energy of the gas suspen-
sion in the form

z2—2p= (0 —0p) + (1 — B) B! (8g — 69) (2.1)
The time is eliminated from the remaining two equations by the division of (1.1) by (1.3).

It is not possible to evaluate Eq, (2.2) in analytical form. Numerical calculations were made which
made it possible to bring out a number of the special characteristics of the combustion process, and to
find an approximation which made it possible to evaluate the combustion time analytically,
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In what follows, we shall neglect the small parameter z; (in accordance with [5] z5 << 1). We shall first
consgider the case of identical initial temperatures of the particles and the gas, and we shall then correlate
the results taking account of their difference.

Taking Tx equal to Ty, we obtain 6y = 65, = 0. In this case, the behavior of the integral curves of Eq.
(2.2) depends on two parameters, i.e., the mass concentration of the particles B and the dimensionless rate
of the chemical reaction {2.

1t is expedient to connect the different types of integral curves and their corresponding combustion
conditions with the relative disposition of the integral curves and the zero isocline of Eq. (2.2). Setting
d6/dz = 0 in Eq. (2.2) we obtain
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The values of the quantities at the isocline are designated by the "plus" sign for the difference from
the corresponding values at the integral curve. A zero isocline exists with

2 .
u <y = exp [ — ) (4 — 2.4)
and is a closed curve in whose internal region, for the integral curves d0/dz < 0, and in whose external re-
gion, d6/dz >0 (the isocline 6,(z4) and the integral curves 6(z) are plotted on the right-hand half of Fig. 1,
and the dependence of the temperature of the particles on the time under different conditions is plotted on
the left-hand half).

Straight lines 1 and 2 on Fig. 1 bound the region within which the integral curves (2.2) can lie. Straight
line 1, bounding the region from above, corresponds to the equation 4 = z and to heating of the particles
without heat transfer with the gas (2— «). Straight line 2 corresponds to homogeneous heating of the whole
gas suspension (2 —0), with which 6 = 0g, and is described by the equation 8 = Bz; it bounds the region from
below.

Let us follow the behavior of the integral curves with different values of the parameters B and €, and
let us give a qualitative description of the corresponding combustion conditions. All the integral curves de-
part from the origin of coordinates with a positive derivative. At large values of the parameter Q with
motion along the integral curve, the derivative d0/dz always remains positive (curve 1, I' on Fig. 1). This
means that there is a monotonic rise in the temperature of the particles, i.e., the growth of the oxide film
does not inhibit the development of the chemical reactions. These combustion conditions (conditions I) are
analogous to the combustion conditions of isolated particles of metal.

With smaller values of the parameter §, the derivative d6/dz decreases along the integral curve and
with some value of Q@ reverts to zero (under these circumstances, the integral curve touches the zero igso-
cline at the point b corresponding to a minimum of the curve of the isocline). This means that the growth
of the oxide film and of the heat transfer from the particles to the gas start to inhibit the progressive de-
velopment of the chemical reaction taking place as a result of heating of the particle. With a further de-
crease in the value of Q, the integral curve intersects the isocline (here, the less the value of , the fur-
ther the points of intersection e, e' lie from the point b) and falls into the region where d6/dz < 0. In this
region, as a result of the growth of the oxide film, there is a decrease in the temperature of the particles
until the integral curve intersects the lower branch of the zero isocline (the point f, /7). After repeated in-
tersection, d0/dz again becomes positive and, under these circumstances, the integral curve moves along
the zero isocline right up to a temperature corresponding to the point c, ¢c'. The type of integral curves
described (II, II' on Fig. 1) corresponds to conditions IL

In the sections de, d'e' and fc, f'c', the integral curve passes near the zero isocline, where do/dz =1.
This means that the self-heating of the gas suspension takes place in a quasi-steady-state manner: at every
moment there is thermal equilibrium between the particles and the gas, shifting slowly as a result of the
accumulation of heat in the gas and the growth of the oxide film. In what follows, the stages de and fc will
be called the high-temperature quasi-steady-state and the low-temperature quasi-steady-state stages, re-
spectively.
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In the high-temperature quasi-steady-state stage, the oxidation rate and the drop between the temper-
atures of the particles and the gas are great in comparison with the analogous characteristics in the low-
temperaturc quasi-steady~-state stage (the line 6g(2) always lies below the straight line 2 on Fig. 1). During
the course of preliminary heating, conditions are attained in the low-temperature quasi-steady-state stage
{the temperature 0y, point ¢, Fig. 1) under which thermal equilibrium becomes impossible and there is ig-
nition of the gas suspension, i.e., a sharp breakaway of the temperature of the particles from the tempera-
ture of the gas.

With a still greater decrease in the parameter §, the point of intersection of the integral curve by the
zero isocline is shifted toward the point ¢ of the zero isocline, and the integral curve passes along the whole
lower hall of the zero isocline. This case corresponds to strong inhibition of the chemical reaction by the
oxide film.

Under these conditions, the low-temperature quasi-steady~-state stages (segments ac, a@'c') are pre-
ceded by an unsteady-state oxidation process, with passage of the temperature of the particles through a
maximum and a minimum. Under these conditions (condition TII), the principal contribution to the induction
period is made by the low-temperature quasi-steady-state stages. Numerical solution of the complete sys-
tem (1.1)-(1.3) shows that the gas suspension arrives at the low-temperature quasi-steady-state stage at a
temperature close to 8y (point @ on I'ig. 1).

The preliminary heating, with the combustion of a gas suspension of particles reacting in accordance
with a heterogeneous mechanism (n = 0), may also take place in a quasi-steady-state manner [3]; the dif-
ference consists in the fact that the shift in the cquilibrium takes place only as a result of the accumulation
of heat in the gas, and the low-temperature quasi-steady-state stage is attained without passage of the tem-
perature of the particles through a maximum and a minimum.

The boundaries separating conditions 1, 11, 11l were calculated numerically (lincs 1, 2 on Fig. 2). Con-
ditions I are realized in the region of parameters above line 1, and conditions 1II in the region below line 2;
conditions 11 correspond to the narrow region of paramcters between lines 1 and 2. The isocline exists in
the region of parameters below line 3 [see Ed. (2.4)|. Under conditions I, with sufficiently large values of
the parameter § (above line 4), cach particle burns under almost adiabatic conditions.

The difference hetween conditions I, 11, III with respect to induction periods and temperatures is sub-
stantial only in the casc where the isocline occupies a large interval with respect to 0 and z. It is shown
below that the dimensions of the isocline are delermined by the degree of removal from the limit of the ex-
istence of the isocline (line 3 on Fig. 2). With a risc in the concentration of the particles, the boundarics
1 and 2 on Fig. 2 approach the limit 3 and the difference betwecen the conditions vanishes.

The quasi-steady-state nature of the preliminary heating under conditions III offers the possibility of
obtaining an approximate analytical expression for the induction period.

Let us make further calculations using the Frank—Kamenetskii expansion [6] of 8 = 0. Let us cvalu-
ate the value of the quasi-steady-state interval [0, 0y]). Calculating do,/dz, from Eq. (2.3), and setting
d04/dzy = 0 with 0 = 0y, d04+/dz4+ = = with 6 = 0,, we obtain the following relationships determining 0, and 0,

In (@, — 1) /ul ==0,, In(032/4u)-=0, (2.5)

A graphical solution of both equations is illustrated on Fig. 3. With increasing distance from limit of
the existence of the isocline (In u™! = 2), the quasi-steady-state temperature interval (6,—6,) increases and,
with approach to the limit, decreases as (In u™t=2)1/2,

The temperatures 0, and 6, depend on the mass concentration of particles, in distinction from a gas
suspension of particles reacting in accordance with a heterogeneous mechanism [3]. This is explained by the
the fact that the oxidation rate of the particles at a given temperature depends on the conditions of the
heating of the particles up to this temperature.

To obtain an approximate formula for the induction period (7j), we integrate the system of Eqgs. (1.1)-
(1.3), setting d9/d7 = 0 in Eq. (1.1)

0, 02

1 QU1 —DB dl
T - T?z(())exp(—())d()——-—(——b,—)§[1 - dg“]do (2.6)




/N — =T 1.6
5.4, 427w
BT ar A
' /T, g,
6 43 + ,/ 0.6
| /I/. ‘
v il . 24
du 5
2t~ - 2.2
! -1
11 G,  bnu P
o 0 22 07 / 2 3 ] 5 6
Eqg. 2 Eg. 3

where z(9) is the equation of the integral curve in the plane 6z (Fig. 1). Taking into account that in the low-
temperature quasi-steady-state stage, the integral curve 1 is close to the isocline, we can substitute z(6),
determined from Eq. (2.3), into Eg. (2.6). The expression ohtained in this case is simplified if the differ-
ence between the temperatures of the particles and the gas is neglected. This follows formally from Eq. (2.3)
with In u™! > 2, where the second term in the expression under the radical sign is small in comparison with
the first, and Eq. (2.3) coincides approximately with the relationship (2.1), written for a homogeneous gas
suspension z4 = 6;/B. Integration of Eq. (2.6) gives

. 0 1 Y (In ut
v, ={I(180) exp (—0)—(1+ 85) exp (D) +uln G- — @ — 0]} 7w = — G- (2.7)
The function ¥ (In u™!) is plotted on Fig. 3 (curve 4). A comparison of computer calculations of the in-
duction period as a function of Qand B (the dotted lines 1, 2, 3 on Fig. 3 correspond to B = 0.5, 0.091, 0.17)
and calculations using formula (2.7) show that the approximate solution (2.7) is close to the exact solution
under conditions III and differs sharply from it under conditions I and IL.

The sharp change in the induction period in narrow intervals with respect to Q and B (numerical so-
lution) is connected with the transition from conditions III to conditions I through conditions IL

In a gas suspension of particles reacting in accordance with a heterogeneous mechanism (this case is
realized if n = 0 in the starting system), conditions II do not exist, and the transition from conditions III to
conditions I takes place smoothly without sharp changes, since, at the boundary separating conditions III and
I, the value of the quasi-steady-state interval (8,—0,) reverts to zero. In the case n =1, the value of (6,—¥6))
reverts to zero at the line 3 (Fig. 2), and the transition from conditions III to conditions I takes place in
region II, which does not intersect line 3.

With an increase in the concentration of particles, the induction period in a gas suspension with n =1
is more sharply curtailed (7j~ B7% than with n = 0 (rj~B~! [3]). This difference is due to the fact that in
the case n =1 the concentration of particles affects not only the total reactive surface of the particles, as
n = 0 [3], but also the thickness of the oxide film and the value of the quasi-steady~state temperature in-
terval (8,—6,).

Formula (2.7) can be used to evaluate the effect of the melting point 6y, at which the oxide film loses
its protective properties, on the induction period. If the temperature 6y, falls into the interval [y, 6,], then,
in Eq. (2.7), 6, must be replaced by 6.

Under these circumstances, the induction period is shortened and on the dependence 7i(Q, B) there
appears a point of inflection corresponding to the equality 6,(2, B) =6,,.

With the combustion of particles without the inhibiting effect of the oxide film, the breakaway from the
low-temperature quasi-steady-state stage takes place at the ignition temperature of an isolated particle
(Tj). For particles of metals with an oxide film, this condition is not satisfied. To convince ourselves of
this, we express the dimensionless ignition temperature of an isolated particle 6; = (E/RT¢%)(T{—T;) in
terms of Q. This value of the parameter Q corresponds to an initial temperature Ty = ER"UnQ~! + const.

It is shown in [5] that with Q =1.57, T, is equal to the ignition temperature of a single particle Tj. Expres-
sing (Ti—T;) in terms of , we obtain 6; = (Tj/Ty) in (1.57/0). A comparison of the analytical expressions
for 6; and 6, shows that 0 < 6,.

By way of example, let us make a calculation using the thermophysical and kinetics constants from (7]
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¢ = 0.214cal/(g-deg) p = 2.7 &/cm?
hg = 2.4-10¢ cal/cm - sec . deg Q = 4600 cal/g

E = 33000 ¢al/moie; ‘ )
ke,™ exp (—E/RT,) = 0.65-10-3exp (—33000/RT,) cm / sec

The ignition temperature of an isolated particle, corresponding to these constants, is equal to 1300° K.
If the initial temperature is 1000° K, then, © ~0.04. With these values of Q, the gas suspension will burn un-
der conditions III with an induction period (with B~0.1 andr =4- 1073 cm) ti ~27 sec, which is two orders
of magnitude greater than the adiabatic induction period of an isolated particle.

Let us pass on to the case of different initial temperatures of the particles and the gas. With T;< Tgps
there exist the same three sets of combustion conditions. The stages discussed above are preceded by the
process of equalization of the temperature of the particles and the gas; the equalization temperature is close
to the temperature of inert mixing Tk = BT, + (1-B)Tg. After the inert heating of the particles up to Ty,
the gas suspension arrives at the low-temperature quasi-steady-state stage as a result of chemical reac-
tions. Since, with T,< Tg,, the temperature Ty is less than T,, the thickness of the oxide film at the
moment of arrival at the low-temperature quasi-steady-state stage will be greater than with equal initial
temperatures of the particles and the gas. As a result of this, the rate of heat evolution in the gas suspen-
sion decreases, the time required for attaining the temperature of breakaway from the low-temperature
quasi-steady-state stage increases, and, in addition, the time required for heating the particles up to Tk
must be added io the residence time in the low-temperature quasi-steady-state stage. As calculations show,
with the development of the low-temperature quasi-steady~state stage, this time is small in comparison
with the time required for quasi-steady-state development of the process and may be neglected.

Choosing the initial temperature of the gas as the scale temperature Ty, and determining z , (6..), 6;, 6,,
Ti in accordance with the scheme expounded above, it can be shown that the induction period is expressed
in terms of the function

1 B Y e - L
o prexp {200l [int 4L 6] (2.8)

3. Effect of Heat Removal and Burning-Out

The combustion of a gas suspension of particles with an oxide film, as well as of particles reacting in
accordance with a heterogeneous mechanism [2, 3], is limited by heat removal in the wall of the vessel and
by burning-out of the particles.

With the presence of heat removal, it is impossible to obtain relationships (2.1), determining the total
reserve of energy in the system. However, during the course of the process under conditions III, the tem-
peratures of the particles and the gas in the low-temperature quasi-steady-state stage differ only slightly,
which permits isolating a parameter determining the critical conditions in the region of the parameters
where the ignition temperature of the suspension is less than the ignition temperature of an isolated particle.
Introducing the new variables x = 7[B(1—B)~!}%, y = zB(1—B)"}, and combining Eq. (1.1), multiplied by
B(1—-B)~}, with Eq. (1.2), in place of (1.1)~(1.3) we obtain

40, -+ BO.(1 — BY) 1 9 1—5 0,—0
i Ty XP[1+BO]" B I 3.1)
1 6
dy/dx:Texp[ T+ J (3.2)
=0, 0=0,=0, y=Bz/(1 —B) <1 (3.3)

The critical condition for ignition is the connection between the parameters of the problem (3.1)-(3.3)

AQB/(1 — B)=-fIB, zB/(1 —B), B/ (1 — B)] (3.4)

Neglecting the diffcrence between the temperatures of the particles and the gas, we see that in place
of the parameter B/(1—B) standing under the differentiation sign in Eq. (3.1), there appears the parameter
1/(1—B), which is insignificant with small concentrations. The small parameter z,B/(1~B) also has only a
slight effect on the critical condition; therefore, with a fixed value of B, the right-hand part of relationship
(3.4) is constant. A numerical solution of the complete system (1.1)-(1.4) with 8 = 0 is in satisfactory agree-
ment with the approximate result (3.4) if we set f =1.2.
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The critical conditions with respect to heat removal for a gas sus-
pension of particles reacting in accordance with a heterogeneous mech-
anism are bound up with the impossibility of a steady-state course of the
reaction, while for a gas suspension of metallic particles, they are
bound up with the existence of a breakaway temperature from the low~
temperature quasi-steady-state stage (under critical conditions, the
breakaway temperature 6, vanishes, in view of the breaking of the iso-
cline).

~
°

Since

Fig. 4 A~BIl(1—B)rt, Q~r" exp(—E/RT,)

then the connection between the critical temperature T’ and the particle size is determined by the relation-
ship

exp (—F / RT,) = const ¥! (1 — B2/ RB* (3.5)

With a decrease in the particle size, the effect of a decrease in the reaction surface (n = 0 [2]) is re-
inforced by the effect of inhibition of the chemical reaction by the oxide film (n = 1); therefore, Ty with n =
1 depends on r more strongly than in the case n = 0 (on Fig. 4 the segment be of the dotted line represents
n = 0, and line 2 represents n = 1, using formula (3.5). Formula (3.4) is approximately applicable sc long as
the critical temperature of the suspension is less than the critical temperature for the ignition of an iso-
lated particle (curve 2 on Fig. 4). With particle sizes greater than ry (ry is the particle size with which
curves 2 and 3 intersect), the ignition temperature of the suspension is close to the ignition temperature of
an isolated particle and does not depend on the particle size [5].

In the region of small particle sizes, the applicability of (3.4) is limited by the critical conditions
for burning-out. The meaning of these conditions consists in the fact that the burning material in the gas
suspension may not suffice to attain the temperature of a breakaway from low-temperature quasi-steady-
state conditions, and the particles may be completely burned out in the low-temperature quasi-steady-state
stage at a temperature close to the temperature of the gas. We write the critical conditions for burning-
out in dimensional form

T = Ty(lnu-t) — BQ/c (3.6)

Relationship (3.6) is approximate since, in the starting system (1.1)-(1.3), no account was taken of
burning-out of the oxidizer or of the change in the reaction surface of the particles during the course of the
preliminary heating. The parameter ©~ r!™ with n = 1 does not contain the particle size; therefore, the
temperature of the breakaway from the low-temperature quasi-steady-state stage T, (In u™!) and, together
with it, the critical initial temperature T;°, do not depend on the particle size (line 1 on Fig, 4). The com-
plete dependence T,°(r) has an S-shaped form (Fig. 4, curve 4). With a decrease in the concentration of
particles, T,° is shifted upward (curve 6 on Fig. 4).

For purposes of comparison, the dotted line 5 shows the dependence of the critical temperature on the
the particle size for a suspension of particles reacting in accordance with a heterogeneous mechanism (n =
0 {2]). The sections of this curve ab, be, ed, correspond to the critical conditions with respect to burning-
out and heat removal, and to the critical condition for the ignition of an isolated particle.

The mutual disposition of curves 1 and 2 on Fig. 4 shows thata transition with respect to the particle
size in a region where burning-out is considerable implies also a simultaneous increase in the degree of
removal from the critical condition for heat removal, while in a region where combustion is limited by ‘
heat removal, burning-out can be neglected. This approximately justifies the separate derivation of the
critical conditions for heat removal (3.4) and for burning-out (3.6).
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